2022 Hydragujo Tech Seminar

WELCOME!

CLEAN ENERGY Fueling The Future

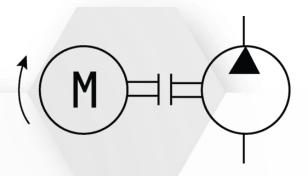
Schroeder 2030 Provides Our Customers Solutions

Schroeder 2030 is an initiative to provide products and services to fluid system designers and operators to help achieve carbon neutrality *and* better profitability.

To Reduce Energy Consumption

- Through products designed for low pressure drop, to minimize horsepower requirements
- Using light-weight materials
- By optimizing the size of components to minimize weight and footprint

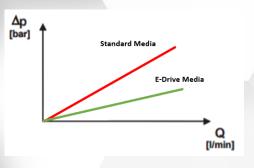
To Reduce Fluid Consumption


- By optimizing the fluid volume requirements for a given system
- Through fluid conditioning to extend time between oil changes
- By recycling waste oil
- By managing fluid health to maximize its useful life

Electric Hydraulic Systems

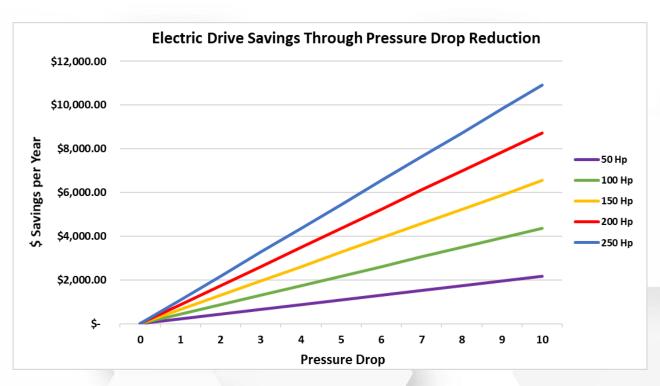
The Future of Hydraulics

- Mobile hydraulics industry's major transformation moving towards electric hydraulic systems
- Electric hydraulic motor-pumps → zero-energy-mode
 - Only operate when flow/pressure is required
 - Energy Efficient
- Up to 70% more efficient than standard hydraulic counterparts
- CO₂ reduction → less fluid being used/less fluid being produced
- Quieter run times → reducing noise decibel readings
- Space and weight savings -> much more compact and lighter
- Reliability Electric drives will last longer, are our components ready.


New Electric Drive (E-Drive) Media

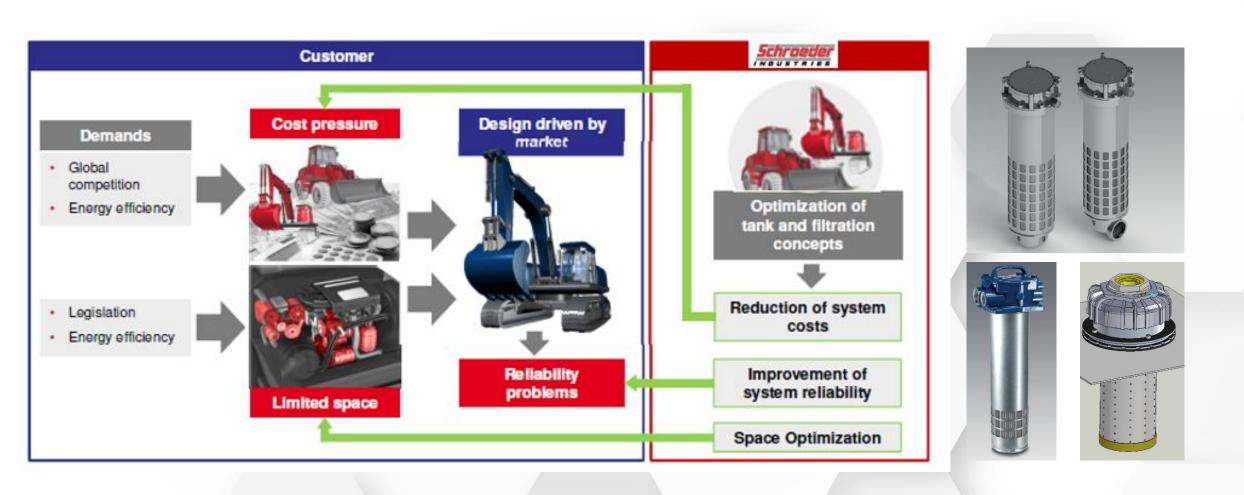
Electro-Hydraulic Drive Media for a Lower Pressure Drop

- E-Drive filter elements use multi-layered synthetic fiber filter media
- Excellent choice for use in electric hydraulic drive motor-pump units
- Schroeder's E-Drive Energy Saving Features:
 - Retains low resistance of flow \rightarrow reduce ΔP across element
 - Energy savings with low DP
 - Great for cold start conditions
- Technical/ROI Specs:
 - Targeting 10 µm filtration rating to start
 - Current estimations at 30% less DP than typical synthetic media
 - Equivalent energy savings (30% less work required)
 - In progress with testing, targeting 2022 product launch

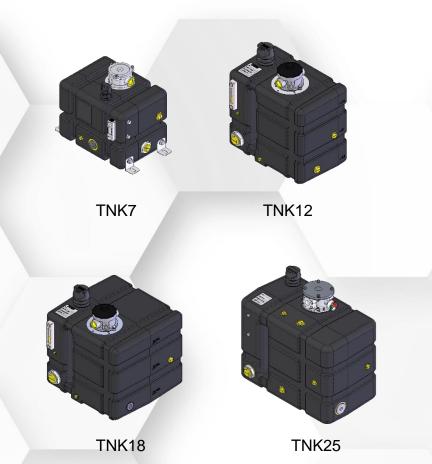


Small Pressure Drop = Large Costs

- All energy has a price and wasting it means wasting \$\$
- Conserve as much energy inputted into a system available to do useful work
- Differential Pressure → loss of energy available in a hydraulic system
- Energy isn't lost, rather converted into thermal energy

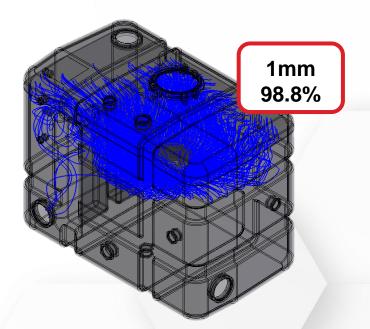


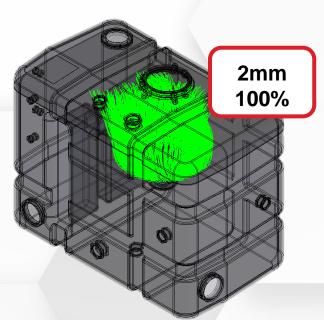
*Assuming electric driven operation at 65% efficiency and 100 psi inlet pressure. \$ Savings based on energy cost of \$0.15/kw-hr & ~6000 hours per year on an electric driven operation.

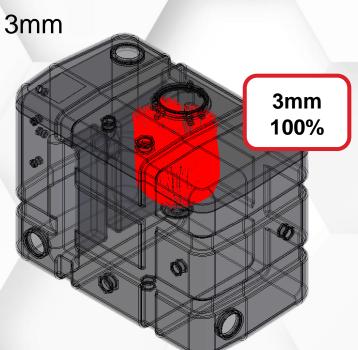

Market Demands and New System Design Approach

TNK – Flow Optimized Rotomolded Polymer Tank Solutions

- 40% Lighter than Steel
- Optimized Flow and de-aeration to do more with less oil.
- Ideal for small to medium OEM's that do not have enough machine volume to justify the tooling cost on their own.
- Complete filter options with each tank package
- Certified Clean to SI Specifications.
- Available with Quality Protected Elements

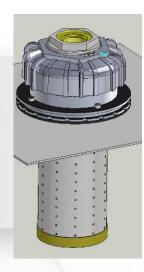


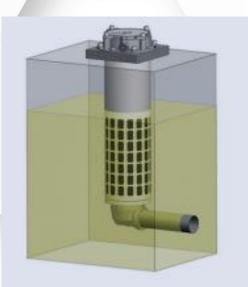



Deaeration Performance (TNK25) Standard

- Two hundred 1mm, 2mm, and 3mm air particles are injected into the system to determine de-aeration performance.
- 1mm air particles have shown in studies to not be a major concern in terms of cavitation or danger to the system
- Our main concern is de-aerating the 2mm and 3mm particles, however, we would like to remove the 1mm particles as well if possible

• The aim is for >75% for 1mm, >85% for 2mm, and >95% for 3mm


New BRT, TRT, & AFT Filters Features & Advantages

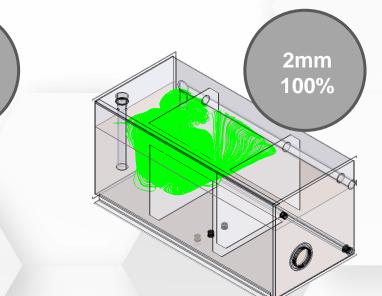

Integrated Deaeration Windows

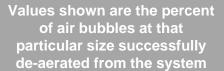
- Directs flow above oil level
- Air bubble coalescence

Advantages

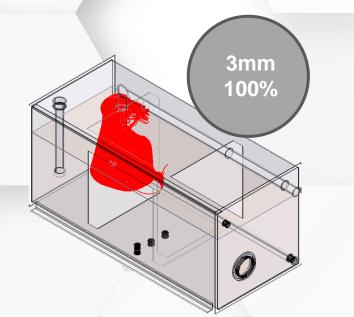
- Improved deaeration increased machine reliability
- Oil volume reduction cost savings, environmentally friendly
- Tank size reduction material cost savings, increases available area for other components
- Simplifies tank fittings and connections material and assembly cost savings

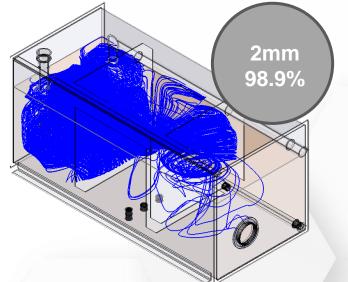
Ladder Truck Tank Optimized Simulation

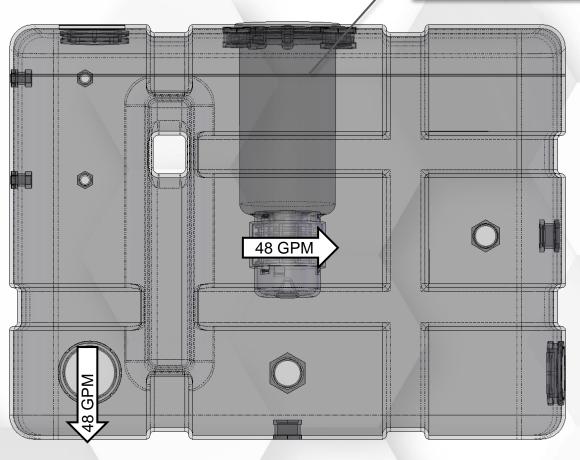




Deaeration Performance


• Two hundred 1mm, 2mm, and 3mm air particles are injected into the system to determine de-aeration performance.

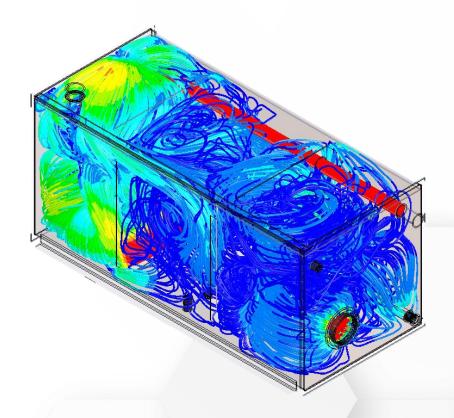

- 1mm air particles have shown in studies to not be a major concern in terms of cavitation or danger to the system
- Our main concern is de-aerating the 2mm and 3mm particles, however we would like to remove the 1mm particles as well if possible
- The aim is for >75% for 1mm, >85% for 2mm, and >95% for 3mm



Boundary Conditions (TNK25) Standard

 Now, we will look at the same operating conditions in a Schroeder TNK25

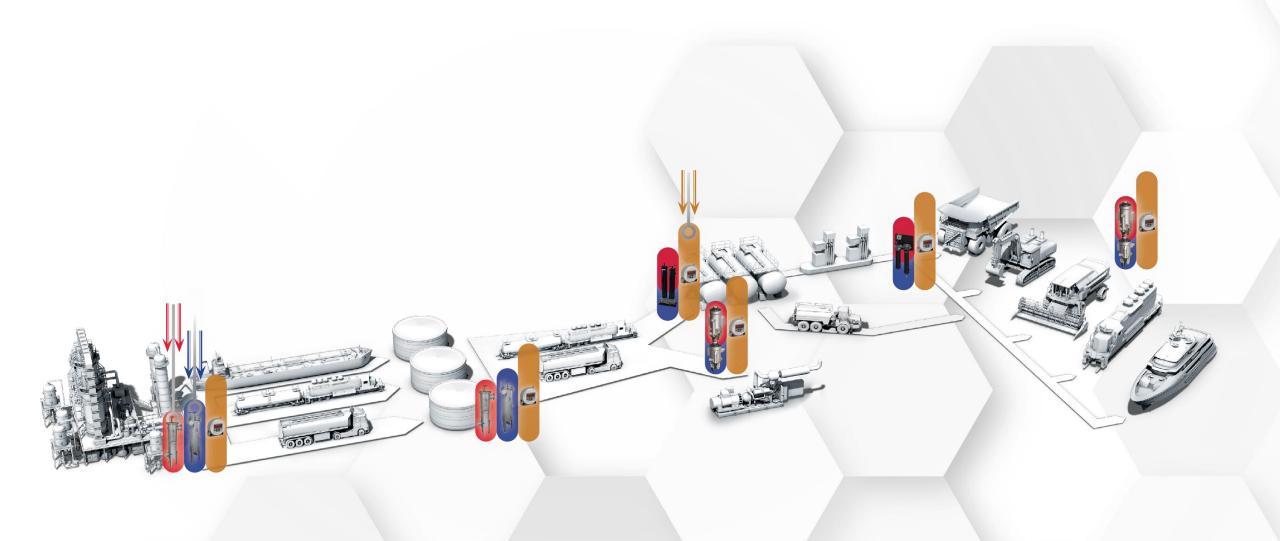
- The TNK25 filled to the top of the fluid level gauge holds 28.7 gallons of fluid
- This will save costs on oil as well as reduce overall weight of the tank
 - This is approximately a 30-gallon savings from the previous two tanks
 - Assuming the gauge steel is 12ga based off of the step models sent: The tanks have a surface area of 4002 in^2 and 3703 in^2 respectively, which approximates out to 121lb and 112lb. The TNK25 weighs 45lb and will save 70lb 80lb based on the tank it is replacing



Summary ROI by the #'s

- Oil & Steel Weight Saving per machine 604 lbs
- Oil Cost savings per machine \$210.00
- CO₂ Reduction from reduced Oil 720 lbs CO₂ / Machine**
- Total Machine Reservoir Cost Savings \$770.00

**https://www.eia.gov/environment/ emissions/co2_vol_mass.php



CLEAN FUEL

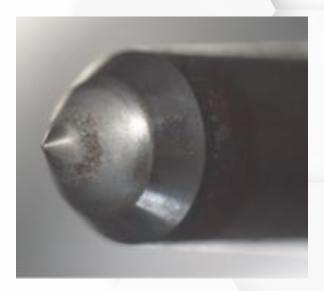
Why Is Fuel Filtration Important?

Fuel Filtration Flow

Fuel Delivery

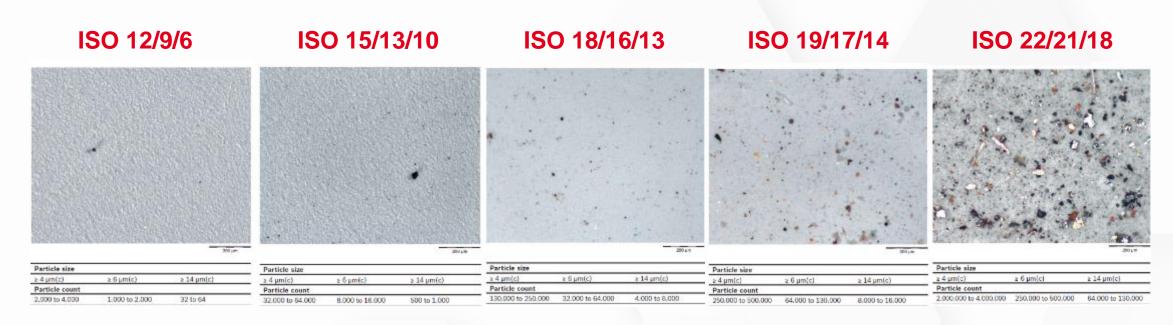
Bulk Diesel Storage

Fuel Dispensing


Point of Use

MAIN TECHNOLOGY DRIVER

- Extremely High Pressures
 - Excess of 30,000 psi
 - Moving to 70,000 psi
- •Tight Tolerance Components
 - •Injector tolerance as small as 2 µm
 - •Moving to 0.5 µm
- •7.1 L Tier IV Engine Platform
 - •>\$3,400 cost of injector (6x)
 - •>\$2,100 cost of pump (1x)


Injector Seat Scoring
Injector Poppet Erosion
Injector Tip Fracture
Mechanical Cylinder Wear
Accelerated Wear Metals

Cleanliness Levels of Diesel

Fuel Injection Target Dispensing Target

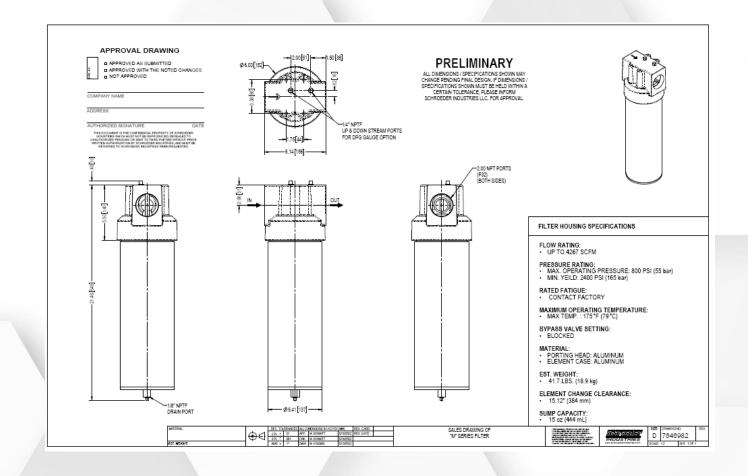
Worldwide Fuel Charter

Cellulose Spin-on Common Bulk Tank

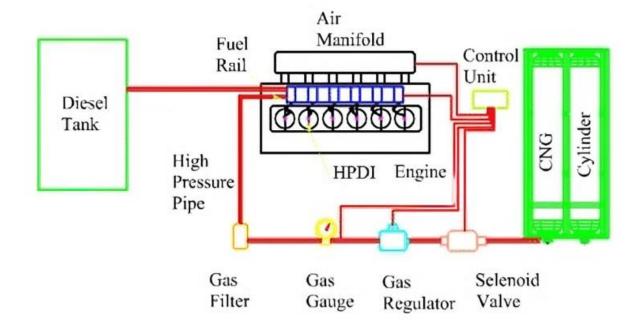
Frac Unit Fan Drive

TNK12 Hydraulic Reservoir for 60 HP Fan Drive for cooling system

Dual Fuel Opportunities



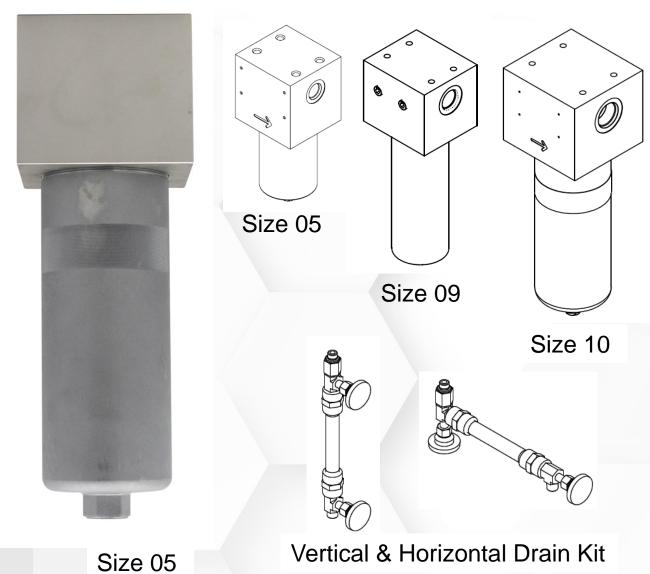
Natural Gas Coalescing & Particulate Filter


Dual Fuel Projects

Competitor:Parker H and Parker M Series

Dual Fuel Application

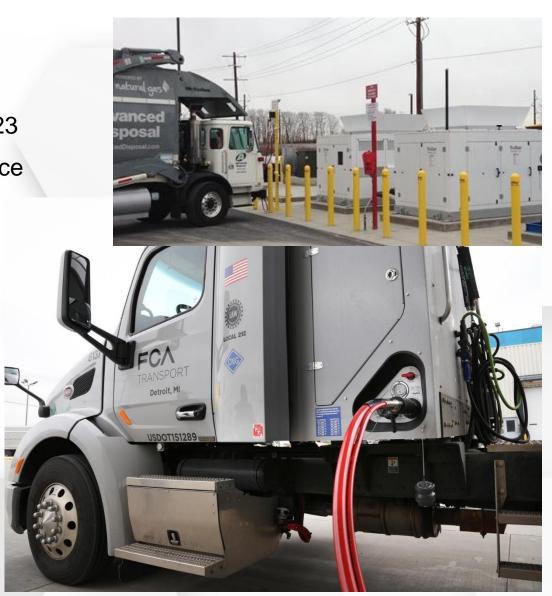
Parker H and Parker M Series



High Pressure Compressed Gas Filter | CGF50 Series

Features:

- 5000 PSI Rated Compressed Gas Housing
- SG Cast Iron Filter Housing, Nickel Plated Head and Bowl
- **UV Stable Epoxy Paint Exterior** Coating
- **Durable Laser Etched Data Tag**
- Optional Drain Kits and Gauge Kits Available
- Standard Tools For Element Service
- Bowls Slotted to Accept Filter Element **Retaining Tabs**
- Assembled in the USA


High Pressure Compressed Gas Filter | CGF50 Series

Motivators for Pursuing the CGF50:

- Increasing Global Interest in Alternative Fuels
 - CNG Projected to Reach \$36 Billion USD by 2023
 - Wide Heavy-Duty Commercial Vehicle Acceptance
- Manufacturer Pricing & Availability Challenges
 - Growing Competitor Lead Times & Pricing

Key Benefits of the CGF50:

- Competitive Pricing
 - Schedule B Discount
- Improved Lead Time / Availability
 - 6 Weeks ARO
- Potential for Private Labeling

Best Fit Fuel – FBO Replacement

Parker FBO 60357

14" (356 mm) – 10 μm Particulate

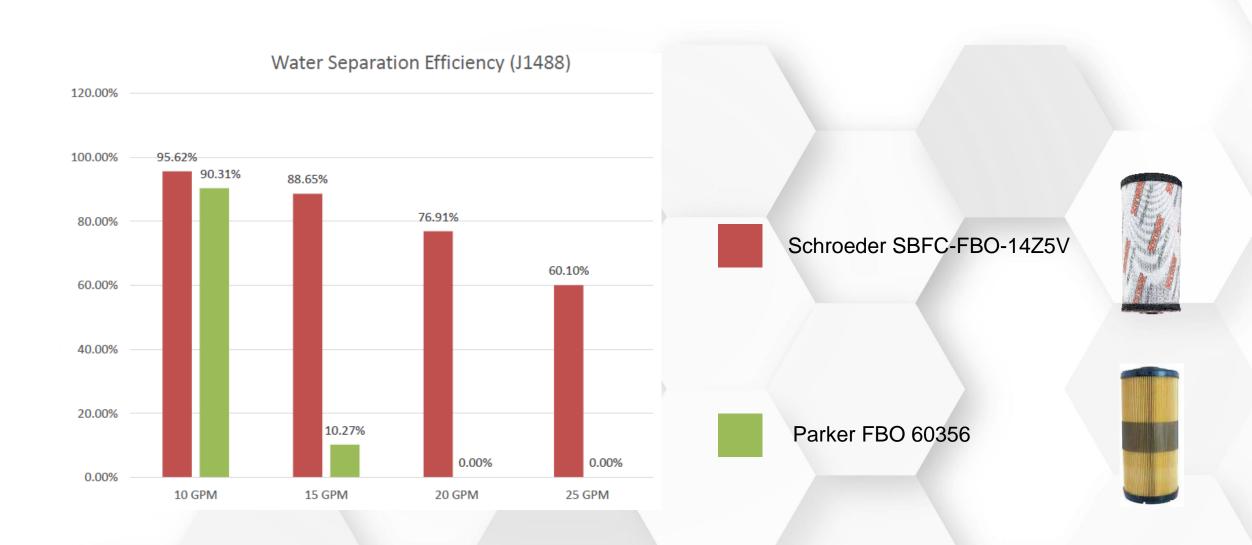
•Media Area: 1997 sq. in. (12,883 sq. cm.)

- •Dirt Holding Capacity @ 15 gpm (57 Lpm)
 - 72.95 grams @ 39.5 psid (2.72 bar)
- •Beta $200 = 23.7 \, \mu m(c)$
- •Beta $1000 = >29.25 \mu m(c)$

Schroeder SBFD-FBO-14Z10V

14" (356 mm) – 10 μm Particulate

 Media Area: 3363 sq. in. (21,694 sq. cm.)


+68.4% Media Area

- Dirt Holding Capacity @ 25 gpm (95 Lpm)
 - 400 grams @ 39.5 psid (2.72 bar)
 - +448% Capacity
- Beta $200 = 11.7 \, \mu m(c)$
- Beta 1000 = 14.9 μm(c)

BestFit Fuel – Parker FBO Water Separation

- Upgrade the system with our QF5i
 - Size and flowrate are similar to Parker IL8
 - Providing OEMs with a new, innovative solution with extra protection and increased performance
 - Increased revenue with our housings and aftermarket elements
- QF5i design utilizes inside-out flow filtration with extra ferromagnetic protection
 - Magnetic filter rod is suspended through the coreless to catch extra ferrous materials during bypass
 - Continuous function whether on cold start or after max DHC is reached and filter enters bypass
 - Remove the rod and wipe ferrous material away with ease
 - The QF5i's Magnetic Rod also extends the element life further by excluding ferrous contaminates for ever reaching the element.

Removes ferrous materials

Actual Photo with hundreds of grams of contaminates collected

Schroeder QF5i vs. Parker IL8

Parker IL8 versus QF5i:

- SI 40 micron is comparable in beta ratios; lower in pressure drop
- SI 40 micron has 73% more DHC than the Parker IL8 element
 - Plus, added advantage of ferrous material on magnetic rod

What if we upgraded to 25 micron?

- Same cost to make a 25 micron as a 40 micron, higher in pressure drop (minimal difference)
 - Upgrade where you can
- SI 25 micron has better beta ratios than both Parker's and SI's 40-micron elements
- SI 25 micron has 254% more DHC than the Parker IL8 element
 - Plus, added advantage of ferrous material on magnetic rod

Parker IL8 - 40 micron	946945Q			
	Test #1	Test #2	Test #3	Avg
DHC (grams)	141.42	103.02	112.02	118.82
Beta 100	> 30.0	> 30.0	> 30.0	> 30.0
Beta 200	> 30.0	> 30.0	> 30.0	> 30.0
Beta 1000	> 30.0	> 30.0	> 30.0	> 30.0

Schroeder QF5i	16QCLIZ40V & 16QCLIZ25V		
	16QCLIZ40V	16QCLIZ25V	
DHC (grams)	205.24	301.23	
Beta 100	> 30.0	21.7	
Beta 200	> 30.0	24.0	
Beta 1000	> 30.0	27.5	

Parker 40 micron → 0.46psi @238LPM QF5I 40 micron → 0.30psi @238LPM Q55I 25 micron → 1.09psi @238LPM

	gpm	l/min
Test Flow Rate:	62.9	238.0
	psid	bar
Terminal Pressure:	40.0	2.8

Schroeder QF5i vs. Parker IL8

ROI for OEMs:

- 40 µm → comparable costs, pressure drops, and efficiencies
- 40 μm → comparing DHCs: use 3 SI elements for every 5 Parker elements
 - 40% Savings just on elements alone!
- 25 μm → comparable costs, lower pressure drops; increased beta efficiencies
- 25 µm → comparing DHCs: use 2 SI elements for every 5 Parker elements
 - 60% Savings just on elements alone!
- Working on a new datasheet to help target against IL8 users with both drop-in direct replacements and upgrading to a better solution!

Schroeder Team

ALAN BRICKER
Regional Sales Manager- Oklahoma

Alan.Bricker@SchroederIndustries.com

THOMAS HOPKINS Regional Sales Manager- Texas

Thomas.Hopkins@SchroederIndustries.com

Questions?

